Uniform asymptotic approximation of diffusion to a small target
نویسندگان
چکیده
منابع مشابه
Uniform asymptotic approximation of diffusion to a small target.
The problem of the time required for a diffusing molecule, within a large bounded domain, to first locate a small target is prevalent in biological modeling. Here we study this problem for a small spherical target. We develop uniform in time asymptotic expansions in the target radius of the solution to the corresponding diffusion equation. Our approach is based on combining expansions of a long...
متن کاملUniform asymptotic approximation of diffusion to a small target: Generalized reaction models.
The diffusion of a reactant to a binding target plays a key role in many biological processes. The reaction radius at which the reactant and target may interact is often a small parameter relative to the diameter of the domain in which the reactant diffuses. We develop uniform in time asymptotic expansions in the reaction radius of the full solution to the corresponding diffusion equations for ...
متن کاملThe Reaction-Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target
The reaction-diffusion master equation (RDME) has recently been used as a model for biological systems in which both noise in the chemical reaction process and diffusion in space of the reacting molecules is important. In the RDME space is partitioned by a mesh into a collection of voxels. There is an unanswered question as to how solutions depend on the mesh spacing. To have confidence in usin...
متن کاملA uniform approximation method to solve absolute value equation
In this paper, we propose a parametric uniform approximation method to solve NP-hard absolute value equations. For this, we uniformly approximate absolute value in such a way that the nonsmooth absolute value equation can be formulated as a smooth nonlinear equation. By solving the parametric smooth nonlinear equation using Newton method, for a decreasing sequence of parameters, we can get the ...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.88.012820